Kernel Dependent Functions in Nonparametric Regression with Fractional Time Series Errors
نویسنده
چکیده
This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (δ) in the asymptotic variance and finding closed form formula of it, where δ is the long-memory parameter. It is shown that V (δ) has a unified form for δ ∈ (−0.5, 0.5)\0 with V (0) := lim δ→0 V (δ) = R(K), the kernel constant for iid errors. General solution of V (δ) for polynomial kernels is given together with a few examples. It is also found, e.g. that the Uniform kernel is no longer the minimum variance one by strongly antipersistent errors and that, for a fourth order kernel, V (δ) at some δ > 0 is clearly smaller than R(K). The results are used to develop a general data-driven algorithm. Data examples illustrate the practical relevance of the approach and the performance of the algorithm.
منابع مشابه
Nonparametric Regression for Dependent Data in the Errors-in-Variables Problem
We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear esti...
متن کاملDiscrimination of time series based on kernel method
Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...
متن کاملNonparametric Bootstrap Tests for Neglected Nonlinearity in Time Series Regression Models∗
Various nonparametric kernel regression estimators are presented, based on which we consider two nonparametric tests for neglected nonlinearity in time series regression models. One of them is the goodness-of-fit test of Cai, Fan, and Yao (2000) and another is the nonparametric conditional moment test by Li and Wang (1998) and Zheng (1996). Bootstrap procedures are used for these tests and thei...
متن کاملMean-Squared Error Analysis of Kernel Regression Estimator for Time Series
Because of a lack of a priori information, the minimum mean-squared error predictor, the conditional expectation, is often not known for a non-Gaussian time series. We show that the nonparametric kernel regression estimator of the conditional expectation is mean-squared consistent for a time series: When used as a predictor, the estimator asymptotically matches the mean-squared error produced b...
متن کاملMore Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic distribution of our estimator under weak dependence conditions. It is shown that the proposed estimation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003